Evaluation of Global Ionospheric Electron Density using Simultaneous Observations from Amateur Radio Networks, International Space Station, and NeQuickG Model for Space Weather Prediction

Gamal Zayed¹

Marcin Leśniowski

P.B.S. Harsha² VU3HPH

Matt Downs 2E1GYP Daniel Metcalfe

Sıla Kardelen Karabulut

¹Cairo University, Egypt ²CentraleSupelec, France

Image credit: NASA Space Apps

INTERNATIONAL SPACE APPS CHALLENGE

Space Apps Challenge

The Challenge

Data from the amateur radio International Space Station (ISS) broadcast and reception systems and networks of ham radio broadcasters can be utilized for applied Heliophysics research. Your challenge is to develop an application that uses these datasets to construct and display images of Earth's ionosphere.

Background

Earth's lonosphere is an envelope of ionized gas surrounding the planet. Interactions between the incoming solar ultraviolet radiation (and shorter wavelengths) and the neutral atmosphere of Earth

BROWSE THE TEAMS

See the teams that took on this year's challenge

VIEW TEAMS

- Develop an application that uses information from ISS and HAM radio broadcasts
- Display images of Earth's ionosphere
- High-temporal and high-spatial resolution

https://2022.spaceappschallenge.org/challenges/2022-challenges/radio-enthusiasts/details

Hackathon time: 48 hours (Weekend)

The Fellowship of the lonosphere

Daniel / Frontend Developer

Gamal / Researcher / Ionospheric model

Harsha / Researcher / ISS data

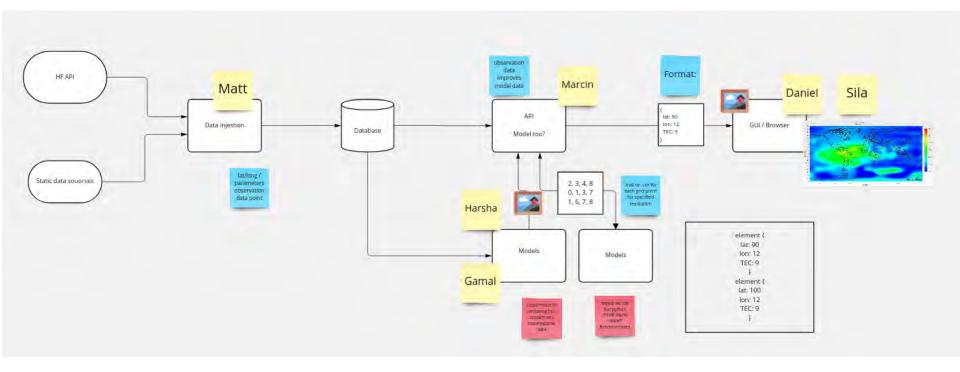
Matt / RF tech / HAM Data

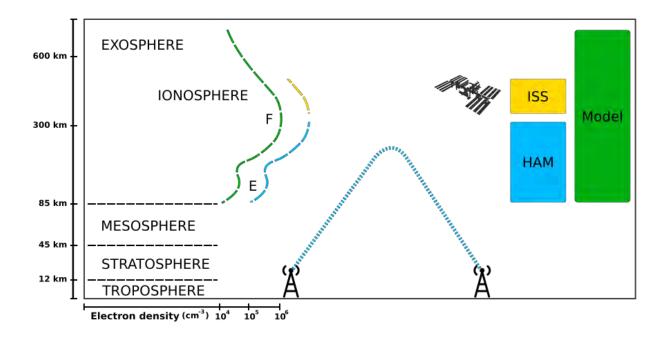
Sıla / Project Manager / Management

Marcin / Developer / Glue

Our Goal

- Web application to allow more exposure (broader audience)
 - no technical knowledge needed to use it
 - O public website can promote ionospheric research
 - splitting frontend and backend allows for independent development

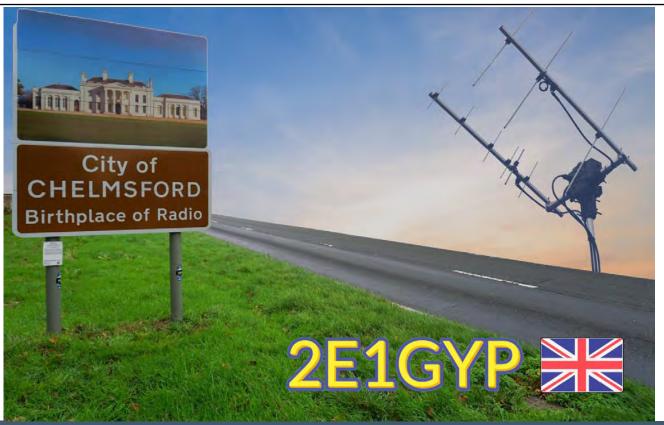

- Be flexible / future proof
 - We might want to eventually combine multiple sources of data
- Be able to see / compare multiple sources of data
 - O HAM
 - O ISS
 - O Model
 - (possibly others)


Individual work schedule

HamSCÏ

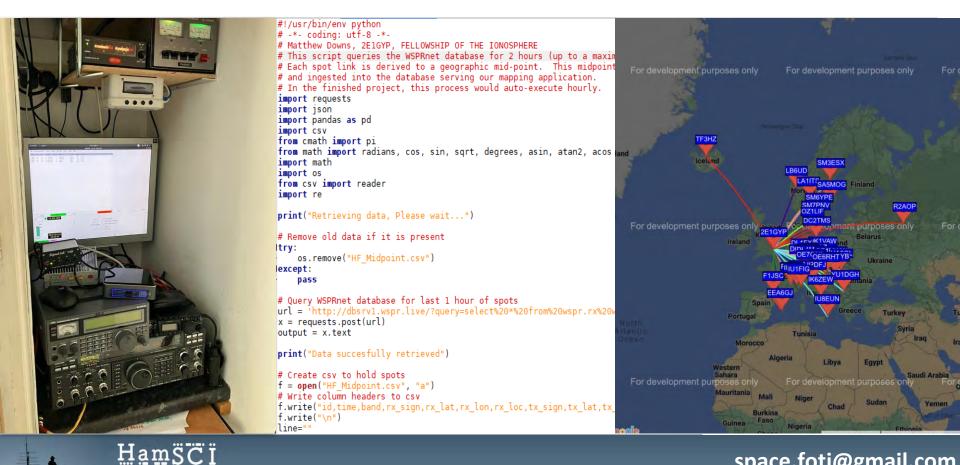
http://hamsci.org

Why multiple sources (vertically)

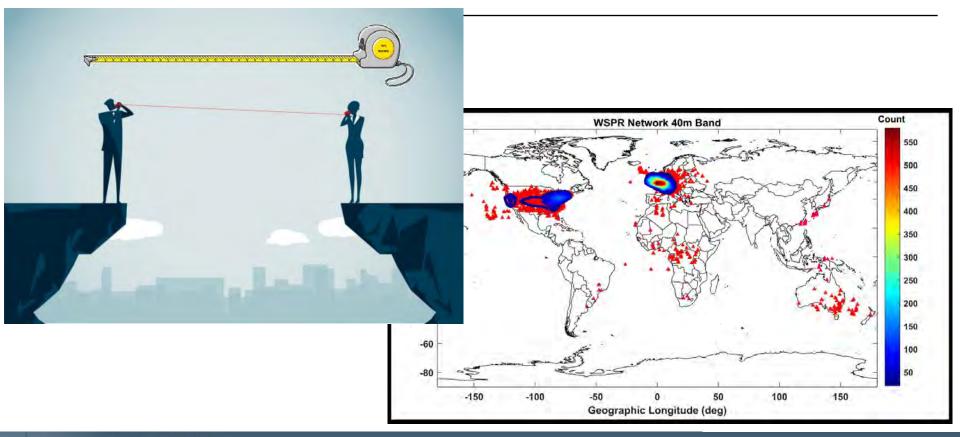

Hams

http://hamsci.org

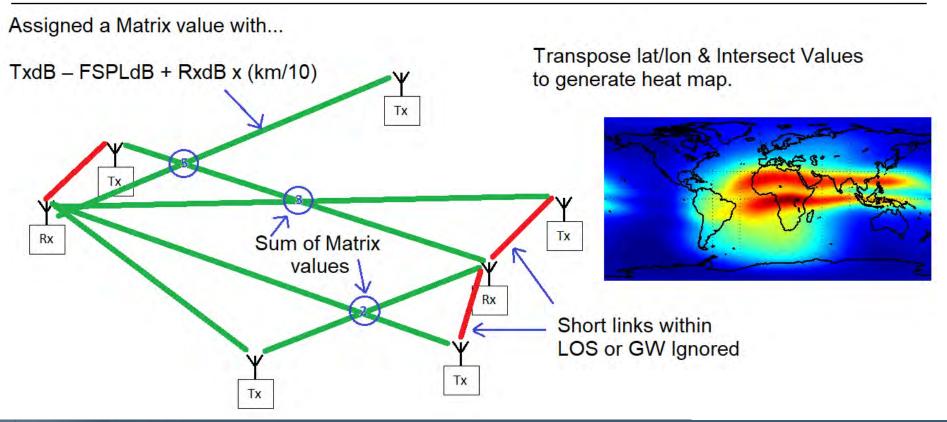
• Intro


- 1. HAM radio reporting network (WSPR)
- Floating Potential Measurement Unit (FPMU) onboard ISS
- NeQuickG global ionospheric model
- Summary

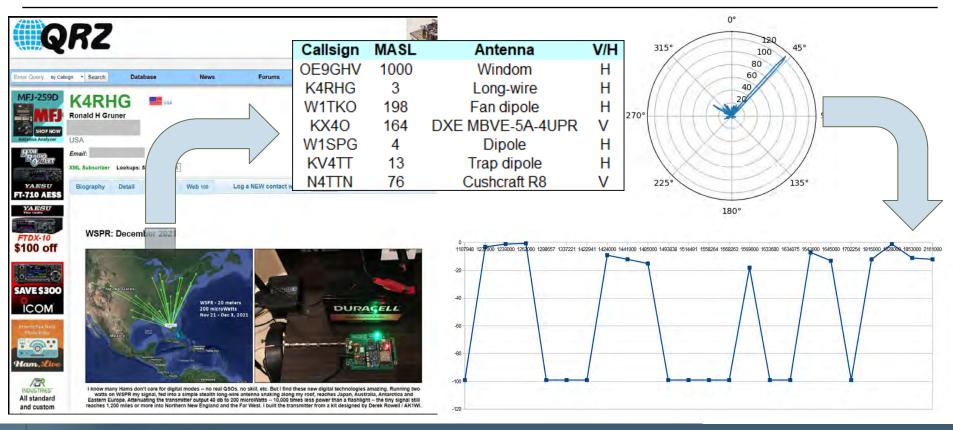
Amateur Radio Networks



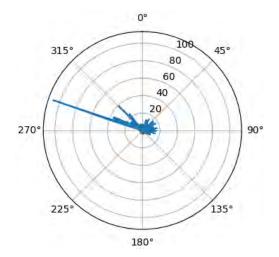
Weak Signal Propagation Reporter Net.

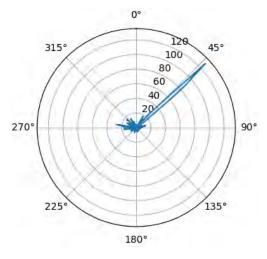

http://hamsci.org

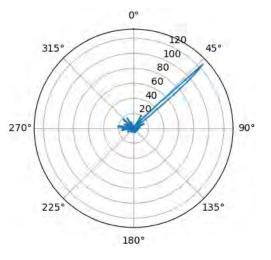
Method 1



Method 2



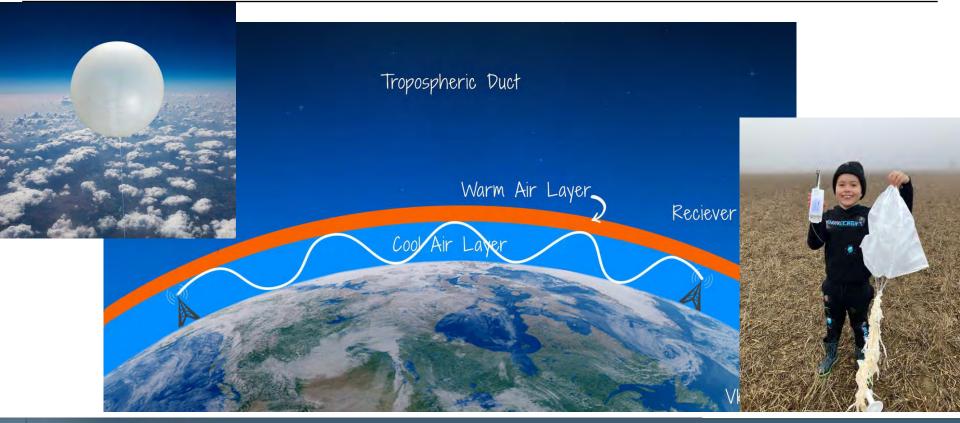



Future research

<u>HamÖÖÏ</u> http://hamsci.org

Gwyn G3ZIL South Coast England

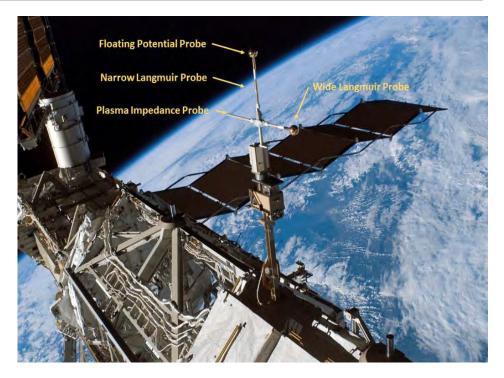
HamSCÏ


http://hamsci.org

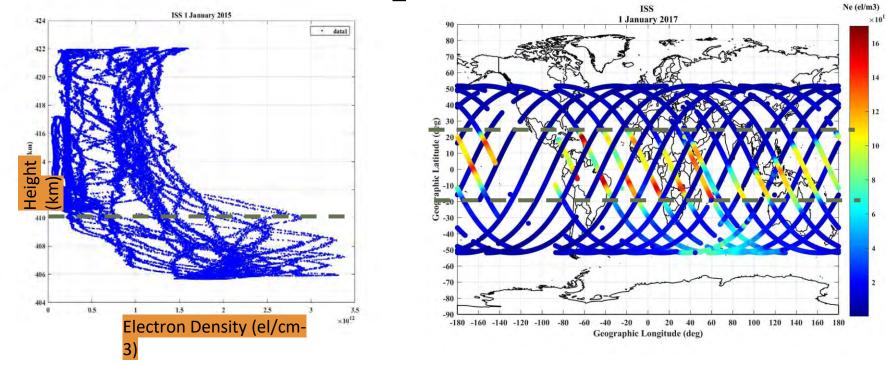
John N8OBJ Case Western Reserve University

W8EDU Case Amateur Radio Club

Future research



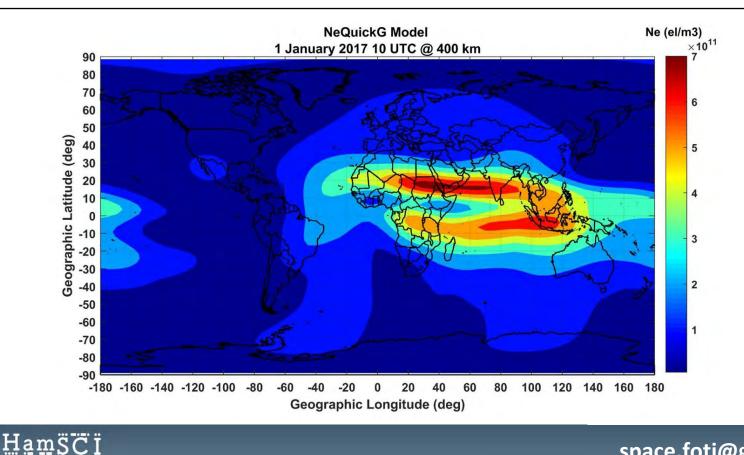
International Space Station (ISS)


- 1. ISS is equipped with a Floating Potential Measurement Unit (FPMU).
- 2. FPMU is a collection of 4 probes that are used to measure the ISS floating potential as well as the electron density and temperature of the local plasma environment.
- 3. Download the data from below link: <u>https://spdf.gsfc.nasa.gov/pub/data/internat</u> <u>ional_space_station_iss/sp_fpmu/</u>

Top-side Electron Density Profile (from ~400 km to ~450 km)

Diurnal variation of electron density

ISS data could be useful for better prediction

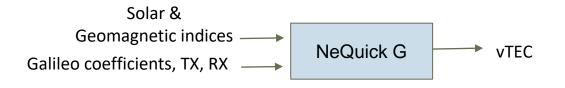

space weather impacts. http://hamsci.org

space.foti@gmail.com

ISS daily orbital trajectory for the 1 January 2017

NeQuick G Model

http://hamsci.org



NeQuick G Model: About

- 1. NeQuick G model is a global ionospheric model
- 2. provides better spatial and temporal resolution.
- 3. developed by
 - a. International Center for Theoretical Physics (ICTP)
 - b. University of Gruz
- 4. As a single frequency model to provide ionospheric corrections for the

GNSS user community.

1. Now, the European Space Agency officially approves the NeQuick G model as a signal of service for the Galileo Users.

The Abdus Salam

UNIVERSITÄT GRAZ

UNIVERSITY OF GRAZ

International Centre for Theoretical Physics

(4)

IAEA

UN

Methodology: Galileo Coefficients

BRDC00IGS_R_20190010000_01D_MN.rnx - Notepad Edit Format View Help File 3.03 N: GNSS NAV DATA M: MIXED RINEX VERSION / TYPE MergeMNfile.tcl 20190711 014358 GMT PGM / RUN BY / DATE IGS 3.7500D-01 1.0681D-03 GAL 2.7750D+01 IONOSPHERIC CORR 7.4506D-09 -1.4901D-08 -5.9605D-08 1.1921D-07 IONOSPHERIC CORR GPSA 9.2160D+04 -1.1469D+05 -1.3107D+05 7.2090D+05 IONOSPHERIC CORR GPSB IONOSPHERIC CORR 6.5193D-09 8.1956D-08 -8.3447D-07 1.7285D-06 X 02 BDSA TONOSPHERIC CORR BDSA 6.5193D-09 8.1956D-08 -8.3447D-07 1.7285D-06 W 05 8.1956D-08 -8.3447D-07 1.7285D-06 X 06 BDSA 6.5193D-09 IONOSPHERIC CORR

MergeMNfile.tcl IGS 201 GAL 2.7750D+01 3.7500D-01 1.0681D-03

3.03

HamSCÏ

http://hamsci.org

N: GNSS NAV DATA

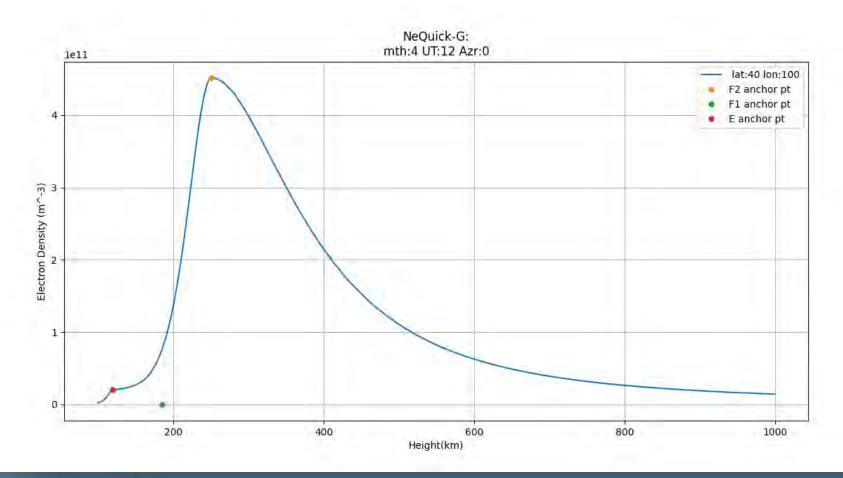
BDSA	6.5193D-09	8.1956D-08	-1.2517D-06	3.3975D-06 U 19	IONOSPHERIC CORR
BDSA	6.5193D-09	8.1956D-08	-9.5367D-07	1.9670D-06 U 25	IONOSPHERIC CORR
BDSA	5.5879D-09	8.9407D-08	-1.0133D-06	2.2650D-06 0 26	IONOSPHERIC CORR
BDSA	6.5193D-09	8.1956D-08	-9.5367D-07	1.9670D-06 U 27	IONOSPHERIC CORR
BDSA	5.5879D-09	8.1956D-08	-9.5367D-07	1.9670D-06 W 28	IONOSPHERIC CORR
BDSA	5.5879D-09	8.9407D-08	-1.0133D-06	2.2650D-06 F 29	IONOSPHERIC CORR
RDSA	5 5879D-09	8 9407D-08	-1 0133D-06	2 2650D-06 V 30	TONOSPHERTC CORR

Code

" Input Parameters here """

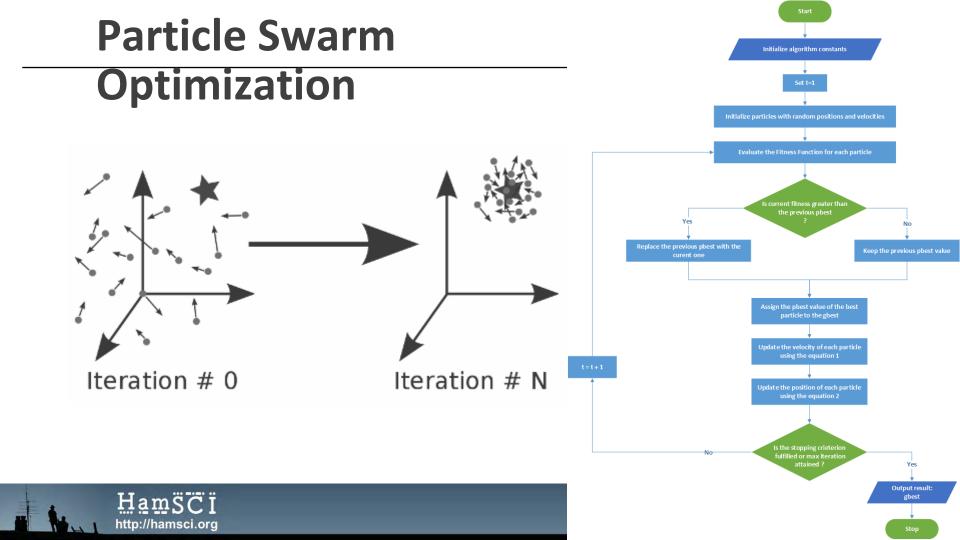
```
UT = 0 #Universal Time
electron_density = [] # two-dimensional array lat x
element_lat = -89
while element_lat <= 90:
    lat.append(element_lat)
    element_lat += 2.5
lon = []
element lon = -180
while element_lon <= 180:
    lon.append(element_lon)
    element_lon += 5
required_height_of_study = 400 #in Kms
## Gallileo Coefficients backing to January 1st, 2017
a0 = 4,4000e+01
a1 = 3.8281e - 01
a2 = -1.8616e-03
# Create input objects
TX = NEQTime(mth, UT)
BX = GalileoBroadcast(a0, a1, a2)
hs = required_height_of_study
```

....


""" Input Parameters here """
mth = 11 #4
UT = 10 #2
electron_density = [] # two dimensional array lat x lon
lat = [] # [y/4 for y in range(-89, 91)] #90#40
element_lat = -89
while element_lat <= 90:
 lat.append(element_lat)
 element_lat += 2.5</pre>

<u>Ham</u><u>S</u>C<u>I</u> http://hamsci.org

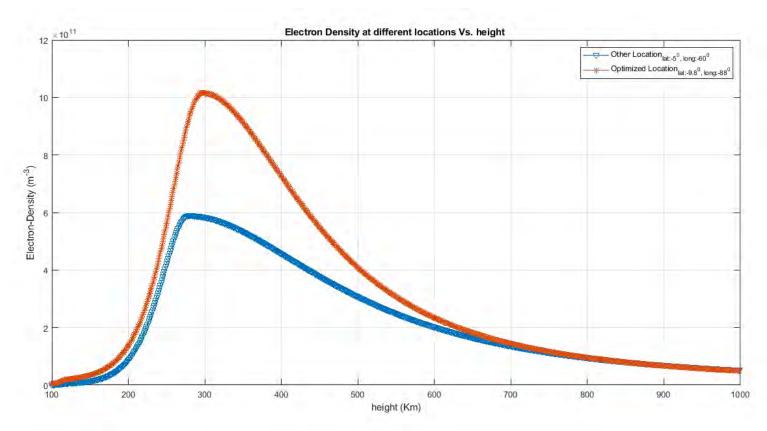
NeQuick G Parameters


space.foti@gmail.com

<u>Ham</u><u>S</u>C<u>I</u> http://hamsci.org

Output Sample

File Edit View Navigate Code VCS Help NequickG_global.py - electron_density_profile_globe.py									
jed	⊕ Ξ ÷	¢ - 4	parameter_n	naps.py	👸 Nequi	ckG_global.py	e 👸 e	lectron_density	_profile_glob
Broject	🏓 electron_de	ensity_profile_gl	obe						
earn	On J	anuary	1st,	2017,	at	12:00	AM,	@heigh	t=400
∳ Learn ★ 31	lati	tude, '	longi	tude,	E-de	nsity			
		-180,	7253	593108	86.01	505			
	ο,	-175,	73629	950112	25.12	654			
Ť		-170,	74752	283243	6.45	357			
	-89,	-165,	75898	864905	64.00	848			
	-89,	-160,	7705	720912	6.58	252			
	-89,	-155,	78220	010655	7.41	339			
	-89,	-150,	79379	954760	7.55	267			
	-89,	-145,	8052	586667	5.08	47			
	-89,	-140,	81650	016623	6.84	795			
	-89,	-135,	8274	518719	9.82	921			
	-89,	-130,	83800	099122	15.64	464			
	-89,	-125,	84800	604051	4.99	04			
	-89,	-120,	85753	339727	6.27	448			
	-89,	-115,	86638	809740	3.21	596			
		-110							
₽ Vers	ion Control	Problems	Se Python 1	Packages	Python	Console I	E Terminal	► Run	



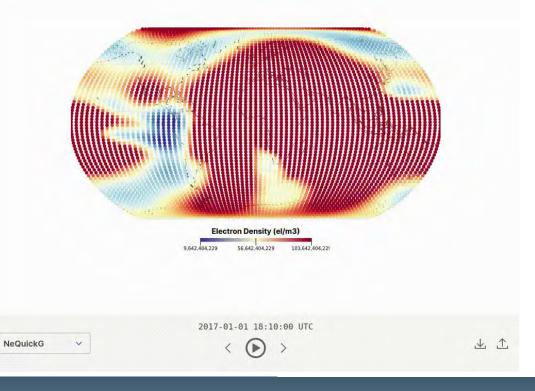
PSO optimized location

HamSCÏ

http://hamsci.org

Results / App

O A https://mrcne.github.io/space-radio-foti/



https://mrcne.github.io/space-radio-foti/

HamSCÏ

http://hamsci.org

Summary

- 1. The project is still in early state of development, but we're still collaborating and having regular meetings.
- 2. We invite people to try the app and give us feedback despite it being far completion.
- **3.** In the future it might help users to understand ionospheric electron density and its hourly variations.
- 4. HAM radio broadcast data from WSPR Network is utilized to approximate the bottom side of the ionosphere.
- 5. ISS provides measurements of the top-side electron density.
- 6. NeQuick G model is useful to study electron density variations with great spatial and temporal resolution.
- 7. Utilization of the three data sources could help in better ionospheric state prediction in the future.

Links and Resources

- Contact us at: <u>space.foti@gmail.com</u>
- Feel free to explore the web app: <u>https://mrcne.github.io/space-radio-foti/</u>
- Source code: <u>https://github.com/mrcne/space-radio-foti</u>
- Space Apps Challenge: <u>https://2022.spaceappschallenge.org/challenges/2022-challenges/radio-enthusiasts/details</u>
- Challenge project: <u>https://2022.spaceappschallenge.org/challenges/2022-challenges/radio-enthusiasts/teams/fellowship-of-the-ionosphere/project</u>
- Weather balloon data: <u>https://www.ncei.noaa.gov/products/weather-balloon/integrated-global-radiosonde-archive</u>
- A survey of the techniques for measuring the radio refractive index (nist.gov)

Thank you / QA

