@proceedings {835, title = {Comparative Analysis of Medium Scale Travelling Ionospheric Disturbances: Grape PSWS vs. SuperDARN }, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are periodic fluctuations in ionospheric electron density associated with atmospheric gravity waves. They are characterized by wavelengths of 50-500 kilometers and periods of 15-60 minutes. This study presents initial findings from a comparative analysis of MSTID observations sourced from two distinct systems: the Super Dual Auroral Radar Network (SuperDARN) and the Grape Personal Space Weather Station (PSWS). The Grape PSWS, developed by the Ham Radio Science Citizen Investigation (HamSCI), is a small ground-based remote sensing device aimed at monitoring space weather parameters, including MSTIDs. It achieves this by monitoring a 10 MHz transmission from WWV, a National Institute of Standards and Technology (NIST) time standard station located near Fort Collins, Colorado, USA. In contrast, SuperDARN comprises a global network of high-frequency radars that offer extensive coverage of ionospheric plasma motion. This comparative investigation focuses on aligning MSTID observations obtained from Grape PSWS data with SuperDARN radar data. By investigating datasets from both platforms, these findings serve as initial results for an ongoing investigation of MSTIDs, laying the groundwork for a comprehensive understanding of their dynamics and impacts on ionospheric variability and space weather.

}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Bharat Kunduri and J. Michael Ruohoniemi and Joseph Baker and William Liles and John Gibbons and Kristina Collins and David Kazdan and Rachel Boedicker} } @proceedings {853, title = {Earth{\textquoteright}s Magnetic Field Migration and Its Effects on HF Propagation}, year = {2024}, month = {03/2024}, publisher = {HamSCI}, address = {Cleveland, OH}, abstract = {

Propagation of radio waves in Earth{\textquoteright}s ionosphere and atmosphere critically depends on the strength and orientation of Earth{\textquoteright}s background magnetic field, due to the fact that electrons move much more readily along field lines than across them.\  The background magnetic field evolves continuously, driven by currents and other processes inside the planet{\textquoteright}s molten core.\  In particular, since 1990, the north magnetic pole has been migrating at an increased speed relative to its rate over most of the past century, and now moves more than 40 km/year.\  However, the south magnetic pole migration is considerably slower.\  The combination of these two effects has caused the global configuration of the geomagnetic field to change significantly.\  We will describe the sustained drift of magnetic field line locations over the last 40 years, with an emphasis on mid-latitudes where a large number of amateur radio operations take place.\  We will then provide estimates of induced changes in HF propagation over that time, using multiple models, and draw conclusions regarding the general climatology of propagation in various well used bands.

}, author = {Philip J. Erickson and William Liles} } @proceedings {691, title = {Climatology of Ionospheric Variability with MSTID Periods Observed Using Grape v1 HF Doppler Receivers}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, author = {Veronica Romanek and Nathaniel Frissell and Kristina Collins and John Gibbons and David Kazdan and William Liles} } @proceedings {757, title = {PyLap: An Open Source Python Interface to the PHaRLAP Ionospheric Raytracing Toolkit}, year = {2023}, month = {03/2023}, publisher = {HamSCI}, address = {Scranton, PA}, abstract = {

PyLap is a Python interface to the ionospheric ray tracing toolkit PHaRLAP. The software allows users to generate accurate models of the ionosphere and ray tracing to make plots of radio propagation through the ionosphere. Not only does this software look, feel, and operate very similarly to how the MATLAB interface is currently used, it is also completely free alternative to the current MATLAB interface.

}, author = {Devin Diehl and Gerard Piccini and Alexander Calderon and Joshua Vega and William Liles and Nathaniel A. Frissell} } @article {667, title = {Amateur Radio: An Integral Tool for Atmospheric, Ionospheric, and Space Physics Research and Operations}, journal = {White Paper Submitted to the National Academy of Sciences Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033}, year = {2022}, doi = {10.3847/25c2cfeb.18632d86}, author = {Nathaniel A. Frissell and Laura Brandt and Stephen A. Cerwin and Kristina V. Collins and David Kazdan and John Gibbons and William D. Engelke and Rachel M. Frissell and Robert B. Gerzoff and Stephen R. Kaeppler and Vincent Ledvina and William Liles and Michael Lombardi and Elizabeth MacDonald and Francesca Di Mare and Ethan S. Miller and Gareth W. Perry and Jonathan D. Rizzo and Diego F. Sanchez and H. Lawrence Serra and H. Ward Silver and David R. Themens and Mary Lou West} } @article {670, title = {Fostering Collaborations with the Amateur Radio Community}, journal = {White Paper Submitted to the National Academy of Sciences Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033}, year = {2022}, doi = {10.3847/25c2cfeb.09fe22b4}, author = {Nathaniel A. Frissell and Laura Brandt and Stephen A. Cerwin and Kristina V. Collins and Timothy J. Duffy and David Kazdan and John Gibbons and William D. Engelke and Rachel M. Frissell and Robert B. Gerzoff and Stephen R. Kaeppler and Vincent Ledvina and William Liles and Elizabeth MacDonald and Gareth W. Perry and Jonathan D. Rizzo and Diego F. Sanchez and H. Lawrence Serra and H. Ward Silver and Tamitha Mulligan Skov and Mary Lou West} } @proceedings {646, title = {HF Doppler Observations of Traveling Ionospheric Disturbances in a WWV Signal Received with a Network of Low Cost HamSCI Personal Space Weather Stations}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

Traveling Ionospheric Disturbances (TIDs) are quasi-periodic variations in ionospheric electron density that are often associated with atmospheric gravity waves. TIDs cause amplitude and frequency variations in high frequency (HF, 3 30 MHz) refracted radio waves. The authors present an analysis of observations of TIDs made with Ham Radio Science Citizen Investigation ( HamSCI ) Low Cost Personal Space Weather Stations (PSWS) located in Northwestern New Jersey and near Cleveland, Ohio. The TIDs were detected in the Doppler shifted carrier of the received signal from the 10 MHz WWV frequency and time standard station in Fort Collins, CO. Using a lagged cross correlation analysis, we demonstrate a method for determining TID wavelength, direction, and period using the collected WWV HF Doppler shifted data.

}, author = {Veronica Romanek and Nathaniel A. Frissell and William Liles and John Gibbons and Kristina V. Collins} } @proceedings {636, title = {Porting the MUSIC Algorithm to the SuperDARN pyDARN Library for the Study of Traveling Ionospheric Disturbances}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are quasi-periodic variations of the F-region ionosphere with periods of 15 to 60 minutes and horizontal wavelengths of a few hundred kilometers that are often associated with atmospheric gravity waves (AGWs). Understanding differences in characteristics such as wavelength, period, and propagation direction between MSTIDs populations in the northern and southern hemisphere can lead to a better understanding of MSTID sources and upper atmospheric dynamics. Previous studies have used SuperDARN radars to observe MSTIDs and determine these characteristics using an implementation of the multiple signal classification (MUSIC) algorithm. In this presentation, we port the MUSIC implementation written in Python 2 for use with the deprecated SuperDARN Data and Visualization Toolkit python (DaViTpy) to Python 3 for use with the current pyDARN library. This implementation will be used to study the differences between MSTID populations observed by SuperDARN radars in both the Northern and Southern hemispheres.

}, author = {Francis Tholley and Nathaniel A. Frissell and William Liles} } @proceedings {635, title = {Preliminary Analysis of WWV Experimental Tone Signals}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

NIST Time station WWV and WWVH have recently been broadcasting a set of audio modulation signals designed by the WWV/H Scientific Modulation Group as an initial exploration of possibilities for using these powerful and ubiquitous time distribution HF transmissions as remote sensing diagnostics of the terrestrial ionosphere.\  Included audio modulations include pseudorandom white noise, swept chirps, controlled amplitude sequences, and single pulses.\  The first task in assessing feasibility for remote sensing is to analyze characteristics of the analog WWV transmitters themselves, in order to gauge the transfer function imposed on the original test transmission.\  Using ground wave recordings from a GNSS locked receiver station maintained by Glenn Elmore N6GN, we present preliminary transmitter-centric analysis of WWV experimental tone signals, focusing on amplitude fidelity, transmission delay, cross-ambiguity examination of frequency and amplitude stability, and pseudorandom noise determinations of audio passband shape.

}, author = {Ethan S. Miller and William Liles and Philip J Erickson} } @proceedings {641, title = {Ray Tracing in Python Utilizing the PHaRLAP Engine}, year = {2022}, month = {03/2022}, publisher = {HamSCI}, address = {Huntsville, AL}, abstract = {

Provision of High-Frequency Raytracing Laboratory for Propagation (PHaRLAP) is an ionospheric ray tracing library developed by the Australian Department of Defence (DOD). PHaRLAP is freely available as a MATLAB toolbox downloadable from an Australian DOD website. PHaRLAP is capable of numerically ray tracing radio propagation paths using 2D and 3D algorithms through model ionospheres, most typically the International Reference Ionosphere (IRI). In an effort to make PHaRLAP available to a wider user community we are porting the PHaRLAP MATLAB toolbox to the open source Python 3 language while retaining the original core PHaRLAP computational engine. In this presentation, we describe the architecture of the new Python 3 PHaRLAP interface and demonstrate examples of 2D ray traces using the new interface.

}, author = {Alexander Calderon and William Liles and Nathaniel Frissell and Joshua Vega} } @conference {544, title = {HamSCI Personal Space Weather: Architecture and Applications to Radio Astronomy}, booktitle = {Annual (Summer) Eastern Conference}, year = {2021}, month = {07/2021}, publisher = {Society of Amateur Radio Astronomers (SARA)}, organization = {Society of Amateur Radio Astronomers (SARA)}, address = {Virtual}, abstract = {

The Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project is a citizen science initiative to develop a new modular set of ground-based instrumentation for the purpose of studying the structure and dynamics of the terrestrial ionosphere, as well as the larger, coupled geospace system. PSWS system instrumentation includes radio receivers sensitive to frequencies ranging from the very low frequency (VLF) through very high frequency (VHF) bands, a Global Navigation Satellite System (GNSS) receiver to provide Total Electron Content (TEC) measurements and serve as a precision time and frequency reference, and a ground magnetometer sensitive to ionospheric and geospace currents. Although the PSWS is designed primarily for space weather and space science, its modular and open design in both hardware and software allows for a variety of use cases. The core radio instrument of the PSWS, the TangerineSDR, is a wideband, direct sampling 100~kHz to 60~MHz field programmable gate array (FPGA)-based software defined radio (SDR) receiver with direct applicability to radio astronomy. In this paper, we describe the PSWS and TangerineSDR architecture, show examples of how the TangerineSDR could be used to observe Jovian decametric emission, and discuss the applicability of the TangerineSDR to radio astronomy in general.

}, url = {https://rasdr.org/store/books/books/journals/proceedings-of-annual-conference}, author = {Nathaniel A. Frissell and Scott H. Cowling and Thomas C. McDermott and John Ackermann and David Typinski and William D. Engelke and David R. Larsen and David G. McGaw and Hyomin Kim and David M. Witten, II and Julius M. Madey and Kristina V. Collins and John C. Gibbons and David Kazdan and Aidan Montare and Dev Raj Joshi and Veronica I. Romanek and Cuong D. Nguyen and Stephen A. Cerwin and William Liles and Jonathan D. Rizzo and Ethan S. Miller and Juha Vierinen and Philip J. Erickson and Mary Lou West} } @conference {540, title = {HamSCI Personal Space Weather Station (PSWS): Architecture and Current Status}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

Recent advances in geospace remote sensing have shown that large-scale distributed networks of ground-based sensors pay large dividends by providing a big picture view of phenomena that were previously observed only by point-measurements. While existing instrument networks provide excellent insight into ionospheric and space science, the system remains undersampled and more observations are needed to advance understanding. In an effort to generate these additional measurements, the Ham Radio Science Citizen Investigation (HamSCI, hamsci.org) is working with the Tucson Amateur Packet Radio Corporation (TAPR, tapr.org), an engineering organization comprised of volunteer amateur radio operators and engineers, to develop a network of Personal Space Weather Stations (PSWS). These instruments that will provide scientific-grade observations of signals-of-opportunity across the HF bands from volunteer citizen observers as part of the NSF Distributed Array of Small Instruments (DASI) program. A performance-driven PSWS design (~US$500) will be a modular, multi-instrument device that will consist of a dual-channel phase-locked 0.1-60 MHz software defined radio (SDR) receiver, a ground magnetometer with (~10 nT resolution and 1-sec cadence), and GPS/GNSS receiver to provide precision time stamping and serve as a GPS disciplined oscillator (GPSDO) to provide stability to the SDR receiver. A low-cost PSWS (\< US$100) that measures Doppler shift of HF signals received from standards stations such as WWV (US) and CHU (Canada) and includes a magnetometer is also being developed. HF sounding algorithms making use of signals of opportunity will be developed for the SDR-based PSWS. All measurements will be collected into a central database for coordinated analysis and made available for public access.

}, author = {Nathaniel A. Frissell and Dev Joshi and Veronica I. Romanek and Kristina V. Collins and Aidan Montare and David Kazdan and John Gibbons and William D. Engelke and Travis Atkison and Hyomin Kim and Scott H. Cowling and Thomas C. McDermott and John Ackermann and David Witten and Julius Madey and H. Ward Silver and William Liles and Steven Cerwin and Philip J. Erickson and Ethan S. Miller and Juha Vierinen} } @conference {545, title = {HF Doppler Observations of Traveling Ionospheric Disturbances in a WWV Signal Received with a Network of Low-Cost HamSCI Personal Space Weather Stations}, booktitle = {Annual (Summer) Eastern Conference}, year = {2021}, month = {07/2021}, publisher = {Society of Amateur Radio Astronomers (SARA)}, organization = {Society of Amateur Radio Astronomers (SARA)}, address = {Virtual}, abstract = {

Traveling Ionospheric Disturbances (TIDs) are quasi-periodic variations in ionospheric electron density that are often associated with atmospheric gravity waves. TIDs cause amplitude and frequency variations in high frequency (HF, 3-30 MHz) refracted radio waves. One way to detect TIDs is through the use of a Grape Personal Space Weather Station (PSWS). The Grape PSWS successfully detected TIDs in the Doppler shifted carrier of the received signal from the 10 MHz WWV frequency and time standard station in Fort Collins, CO. This paper will present an explanation of how the Grape PSWS was used to collect data, and how scientist can use this data to further investigate the ionosphere.

}, url = {https://rasdr.org/store/books/books/journals/proceedings-of-annual-conference}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Dev Raj Joshi and William Liles and Claire C. Trop and Kristina V. Collins and Gareth W. Perry} } @conference {539, title = {HF Doppler Observations of Traveling Ionospheric Disturbances in a WWV Signal Received with a Network of Low-Cost HamSCI Personal Space Weather Stations}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

Traveling Ionospheric Disturbances (TIDs) are quasi-periodic variations in ionospheric electron density that are often associated with atmospheric gravity waves. TIDs cause amplitude and frequency variations in high frequency (HF, 3-30 MHz) refracted radio waves. We present observations of TIDs made with a network of Ham Radio Science Citizen Investigation (HamSCI) Low-Cost Personal Space Weather Stations (PSWS) with nodes located in Pennsylvania, New Jersey, and Ohio. The TIDs were detected in the Doppler shifted carrier of the received signal from the 10 MHz WWV frequency and time standard station in Fort Collins, CO. Using a lagged cross correlation analysis, we demonstrate a method for determining TID wavelength, direction, and period using the collected WWV HF Doppler shifted data.

}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Dev Joshi and William Liles and Clair Trop and Kristina Collins and Gareth Perry} } @proceedings {458, title = {Mid-latitude Irregularities in the Early Results from the Ionospheric Sounding Mode Using Chirp Ionosondes of Opportunity for the HamSCI Personal Space Weather Station}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, abstract = {

The objective of the Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS) project is to develop a distributed array of ground-based multi-instrument nodes capable of remote sensing the geospace system. This system is being designed with the intention of distribution to a large number of amateur radio and citizen science observers. This will create an unprecedented opportunity to probe the ionosphere at finer resolution in both time and space as all measurements will be collected into a central database for coordinated analysis. Individual nodes are being designed to service the needs of the professional space science researcher while being cost-accessible and of interest to amateur radio operators and citizen scientists. At the heart of the HamSCI PSWS will be a high performance 1 {\textendash} 50 MHz software defined radio (SDR) with GNSS-based precision timestamping and frequency reference. This SDR is known as the TangerineSDR and is being developed by the Tucson Amateur Packet Radio (TAPR) amateur radio organization. The primary objective of PSWS system is to gather observations to understand the short term and small spatial scale ionospheric variabilities in the ionosphere-thermosphere system. These variabilities are important for understanding a variety of geophysical phenomena such as Traveling Ionospheric Disturbances (TIDs), Ionospheric absorption events, geomagnetic storms and substorms. We present early results suggesting signatures of Traveling Ionospheric Disturbances (TIDs) from an ionospheric sounding mode that we intend to implement on the PSWS system, currently implemented on an Ettus N200 Universal Software Radio Peripheral (USRP) using the open source GNU Chirpsounder data collection and analysis code.

}, author = {Dev Joshi and Nathaniel A. Frissell and William Liles and Juha Vierinen and Ethan S. Miller} } @conference {536, title = {Observations of Mid-latitude Irregularities Using the Oblique Ionosonde Sounding Mode for the HamSCI Personal Space Weather Station}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

The spread in the echoes of high-frequency (HF, 3-30 MHz) radio waves from the F-region of the ionosphere has been the earliest indication of plasma density irregularities in the mid-latitude F region ionosphere. Although mid-latitude spread F has been widely studied, the plasma instability mechanisms for these irregularities are still largely unknown. This phenomenon can cause radio wave scintillation effects that degrade the performance of man-made technologies such as satellite communications and global navigation satellite systems (GNSS). Understanding these irregularities so that they can be anticipated and mitigated are important aspects of space weather research. The occurrence climatology and variability can also be helpful in modeling efforts of these irregularities. Here, we present signatures of mid-latitude irregularities observed in oblique ionograms received near Scranton, PA transmitted by the Relocatable Over-the-Horizon Radar (ROTHR) in Chesapeake, Virginia. These observations are collected with the GNU Chirpsounder2 software, an open-source software package capable of creating ionograms from frequency modulated (FM) chirp ionosondes. This ionospheric sounding mode will be implemented in the currently under development Ham Radio Science Citizen Investigation (HamSCI) Personal Space Weather Station (PSWS), a ground-based multi-instrument system designed to remote-sense the ionosphere using signals of opportunity.

}, author = {Dev Joshi and Nathaniel A. Frissell and William Liles and Juha Vierinen} } @proceedings {478, title = {A Survey of HF Doppler TID Signatures Observed Using a Grape in New Jersey}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, url = {https://hamsci2021-uscranton.ipostersessions.com/?s=6A-B6-94-74-A1-46-CF-D2-AC-BA-F3-58-2E-71-17-97}, author = {Veronica I. Romanek and Nathaniel A. Frissell and Dev Joshi and William Liles and Kristina Collins and John Gibbons and David Kazdan} } @proceedings {494, title = {W3USR and The Great Collegiate Shortwave Listening Contest}, year = {2021}, month = {03/2021}, publisher = {HamSCI}, address = {Scranton, PA (Virtual)}, url = {https://hamsci2021-uscranton.ipostersessions.com/Default.aspx?s=1B-12-5C-9B-5C-AF-F5-8B-AC-62-CD-DD-D5-51-6A-9A}, author = {M. Shaaf Sarwar and Veronica I. Romanek and Thomas Baran and Jonathan Rizzo and Steve Holguin and Jonathan Rizzo and Nathaniel A. Frissell and William Liles and Kristina Collins and David Kazdan} } @conference {359, title = {HamSCI: Space Weather Operational Resources and Needs of the Amateur Radio Community}, booktitle = {American Meteorological Society Annual Meeting}, year = {2020}, month = {01/2020}, publisher = {American Meteorological Society Annual Meeting}, organization = {American Meteorological Society Annual Meeting}, address = {Boston, MA}, abstract = {

The amateur (ham) radio community is a global community of over 3 million people who use and build radio equipment for communications, experimentation, and science. By definition, amateur radio is a volunteer service, with the operators required to hold government-issued licenses that are typically earned by passing knowledge tests covering radio regulations and practices, radio theory, and electromagnetic theory. In the United States, there are about 750,000 licensed hams, ranging in age from very young to very old, and ranging in experience from neophyte to people with advanced degrees in radio engineering and science. Amateur radio operators are licensed to transmit on bands spread across the radio frequency (RF) spectrum, from very low frequency (VLF) up to hundreds of gigahertz. The purpose of these communications range from mission-critical emergency and public service communications to social contacts to highly competitive contests and achievement award programs. Many of these communications rely on trans-ionospheric paths, and therefore are heavily influenced by conditions in near-Earth space, or space weather.
Amateurs today obtain space weather and propagation prediction information from sources such as the NOAA Space Weather Prediction Center (SWPC), spaceweather.com, the Voice of America Coverage Analysis Program (VOACAP), amateur radio propagation columnists (ARRL, RSGB, and CQ Magazine), and spaceweatherwoman.com (Dr. Tamitha Skov). In order to predict success for their communications efforts, hams often use parameters such as smoothed sunspot number, 10.7 cm wavelength solar flux proxy, and the planetary Kp and Ap indices as inputs to predict radio propagation performance. Traditionally, these predictions focus on the driving influence of space conditions and the sun{\textquoteright}s output. However, frontier research in the space sciences community has revealed that for improved predictive success, much more information needs to be provided on neutral atmosphere dynamics from the lower atmosphere and its coupled effects on the ionosphere, and predictions need to be available at higher temporal and spatial resolution. Lower atmospheric influences include atmospheric gravity waves that can couple to traveling ionospheric disturbances that can dramatically alter radio propagation paths. Tropospheric phenomena such as temperature inversions and wind shear also affect VHF and UHF propagation. To be most useful, the ham community needs operational products that provide real time nowcasts and multi-day forecasts which predict how space weather through the whole atmosphere affects radio wave propagation on global scale and at all operational wavelengths.
To help with this effort, hams can provide data with unique spatial and temporal coverage back to the research and forecast community. The amateur radio community has already started this process with the creation of multiple global-scale, real-time propagation reporting systems such as the Weak Signal Propagation Reporting Network (WSPRNet), PSKReporter, and the Reverse Beacon Network (RBN). Studies by the Ham radio Science Citizen Investigation (HamSCI) have shown that data from these systems, if applied correctly, can effectively be used to study ionospheric space weather events. Experienced amateurs keep detailed records of verified point-to-point contacts and have extensive experience operating under a wide variety of geophysical conditions and locations, both of which can provide unique insights when shared with the professional research community. In this presentation, we will describe efforts led by the HamSCI collective to provide this research community feedback through active HamSCI community email lists and annual HamSCI workshops. We will also describe strategies with good initial success at amateur-professional collaboration, including a HamSCI-led amateur radio community - professional research community partnership to create a network of HamSCI Personal Space Weather Stations (PSWS), which will allow citizen scientists to make science-grade space weather observations from their own backyards.

}, url = {https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/370904}, author = {Nathaniel A. Frissell and Philip J. Erickson and Ethan S. Miller and William Liles and H. Ward Silver and R. Carl Luetzelschwab and Tamitha Skov} } @conference {329, title = {IonTV: Using WWV Timing Reference Signals to Observe Ionospheric Variation}, booktitle = {Hamvention HamSCI Forum}, year = {2019}, month = {05/2019}, publisher = {Dayton Amateur Radio Association}, organization = {Dayton Amateur Radio Association}, address = {Xenia, OH}, abstract = {

For decades, an AM modulated time signal has been broadcast at multiple HF frequencies by the National Institute of Standards and Technology (NIST).\  Shortwave radio stations WWV in Colorado and WWVH in Hawaii use these frequencies for the broad dissemination of accurate coordinated universal time information.\  As the HF signal traverses the ionosphere, propagation effects ensue, and the high temporal precision of the original transmitted signal provides an attractive potential for wide-sense monitoring of ionospheric variations.\  We present the results of an ongoing set of data collections and statistical analysis of the received variation in WWV timing signals aimed at extracting ionospheric propagation effects.\  The work includes design of a software defined receiver (SDR) for processing the amplitude modulated dual sideband (AM-DSB) timing signal. By observing the time shift between consecutive seconds of the 10MHz WWV timing signal, reflected from the ionosphere, the change in the effective height of the ionosphere can be estimated.\  Simultaneous measurements taken from different observation angles allow a more accurate sensing of ionospheric electron density variability as projected into refractive effects.\  The project also has a goal of creating a straightforward and reliable way for hobbyists and citizen scientists to demodulate and process their own NIST timing data. We describe a sample analysis of several blocks of WWV received data, both on remote paths and locally through groundwave propagation near the Colorado transmit array, including simultaneous collects. To process the timing data, several approaches will be described, including a heterodyne SDR with a digital phase-locked-loop (PLL).\  Carrier offset tracking using PLL techniques produce Doppler shifts that are associated with traveling ionospheric disturbances and inherent electron density variability.\  Demodulation and amplitude/phase analysis of the 100 Hz subcarrier of WWV can also provide precise delta-time information on ionospheric propagation through examination of variability in arrival of the leading edge of 1 pulse-per-second ticks.\  Results to date suggest that variation between consecutive second markers is a uniformly distributed Gaussian random variable with at least some of this variation due to ionospheric factors, although systematics must be addressed.

}, author = {Philip J. Erickson and William Liles and J. Dusenbury and K.C. Kerby-Patel and Ethan Miller and Gary Bust and Cathryn Mitchell} } @conference {290, title = {IonTV: Using WWV Timing Reference Signals to Observe Ionospheric Variation}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, abstract = {

For decades, an AM modulated time signal has been broadcast at multiple HF frequencies by the National Institute of Standards and Technology (NIST).\  Shortwave radio stations WWV in Colorado and WWVH in Hawaii use these frequencies for the broad dissemination of accurate coordinated universal time information.\  As the HF signal traverses the ionosphere, propagation effects ensue, and the high temporal precision of the original transmitted signal provides an attractive potential for wide-sense monitoring of ionospheric variations.\  We present the results of an ongoing set of data collections and statistical analysis of the received variation in WWV timing signals aimed at extracting ionospheric propagation effects.\  The work includes design of a software defined receiver (SDR) for processing the amplitude modulated dual sideband (AM-DSB) timing signal. By observing the time shift between consecutive seconds of the 10MHz WWV timing signal, reflected from the ionosphere, the change in the effective height of the ionosphere can be estimated.\  Simultaneous measurements taken from different observation angles allow a more accurate sensing of ionospheric electron density variability as projected into refractive effects.\  The project also has a goal of creating a straightforward and reliable way for hobbyists and citizen scientists to demodulate and process their own NIST timing data. We describe a sample analysis of several blocks of WWV received data, both on remote paths and locally through groundwave propagation near the Colorado transmit array, including simultaneous collects. To process the timing data, several approaches will be described, including a heterodyne SDR with a digital phase-locked-loop (PLL).\  Carrier offset tracking using PLL techniques produce Doppler shifts that are associated with traveling ionospheric disturbances and inherent electron density variability.\  Demodulation and amplitude/phase analysis of the 100 Hz subcarrier of WWV can also provide precise delta-time information on ionospheric propagation through examination of variability in arrival of the leading edge of 1 pulse-per-second ticks.\  Results to date suggest that variation between consecutive second markers is a uniformly distributed Gaussian random variable with at least some of this variation due to ionospheric factors, although systematics must be addressed.

}, author = {Philip J. Erickson and William Liles and J. Dusenbury and K.C. Kerby-Patel and Ethan Miller and Gary Bust and Cathryn Mitchell} } @conference {291, title = {Plans for EclipseMob 2024}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, abstract = {

During the 2017 solar eclipse, the EclipseMob project conducted a collaborative effort to crowdsource a large-scale geographically distributed measurement of LF radio wave propagation. Do-it-yourself antenna and receiver kits were distributed to libraries, schools, and citizen scientists across the United States, paired with a smartphone app that provided data recording and software-defined radio functionality. While the data collection was ultimately not successful because of a problem with the receiver-smartphone interface, the EclipseMob crowdsourced measurement model still has the potential to make a valuable contribution to the study of the iono- sphere. The availability of low-cost electronic components and modern GPS-based location services presents an opportunity to coordinate nationwide radio measurements that can be performed by hobbyists, students, educators and other citizen scientists. At present, EclipseMob is actively planning for the 2024 eclipse in the eastern United States. The EclipseMob kit will be redesigned for the 2024 eclipse, both to address the previous kit{\textquoteright}s issues and to accommodate recent changes in smartphone technology such as the elimination of the headphone jack on many newer phone models. EclipseMob also envisions a much larger data collection effort in 2024, so outreach, recruitment, and training efforts will need to be conducted on a much larger scale. This talk will discuss how we plan to address some of the logistical and outreach challenges faced by the new, expanded incarnation of EclipseMob.

}, author = {J. Ayala and K. C. Kerby-Patel and William Liles and H. McElderry and J. Nelson and L. Lukes} } @conference {315, title = {PSWS Science Requirements Panel Discussion (Panel)}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, abstract = {

Moderator: Ward Silver, N0AX

  1. Phil Erickson, W1PJE, MIT Haystack Observatory, Radio, Ionospheric, \& Magnetospheric Science
  2. Nathaniel Frissell, W2NAF, NJIT, Radio, Ionospheric, \& Magnetospheric Science
  3. Hyomin Kim, KD2MCR, NJIT, Magnetospheric Physics
  4. Bill Liles, NQ6Z, VLF Science
  5. John Ackermann, N8UR, TAPR, Radio Engineering
  6. Scotty Cowling, WA2DFI, TAPR, Radio Engineering
  7. Tom McDermott, N5EG, TAPR, Radio Engineering
}, author = {John Ackermann and Scotty Cowling and Philip J. Erickson and Nathaniel A. Frissell and Hyomin Kim and William Liles and Thomas McDermott and Ward Silver} } @conference {164, title = {VLF/LF and the 2017 Total Solar Eclipse}, booktitle = {Dayton Hamvention}, year = {2017}, address = {Xenia, OH}, abstract = {

Previous solar eclipse studies have observed different propagation effects at VLF/LF frequencies (3-300 kHz) compared with those observed at HF (3-30 MHz) frequencies. These differences are primarily due to the much longer wavelengths at lower frequencies in concert with ionospheric D layer interactions. To better understand the unusual eclipse-induced effects at VLF/LF frequencies, we present EclipseMob, a crowdsourced collection effort that will use smart phones as simple VLF/LF software defined radio (SDR) receivers to record changes in propagation from known transmitters during the 2017 Total Solar Eclipse.

}, author = {William Liles and L. Lukes and J. Nelson and K. Kerby-Patel} }