@article {667, title = {Amateur Radio: An Integral Tool for Atmospheric, Ionospheric, and Space Physics Research and Operations}, journal = {White Paper Submitted to the National Academy of Sciences Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033}, year = {2022}, doi = {10.3847/25c2cfeb.18632d86}, author = {Nathaniel A. Frissell and Laura Brandt and Stephen A. Cerwin and Kristina V. Collins and David Kazdan and John Gibbons and William D. Engelke and Rachel M. Frissell and Robert B. Gerzoff and Stephen R. Kaeppler and Vincent Ledvina and William Liles and Michael Lombardi and Elizabeth MacDonald and Francesca Di Mare and Ethan S. Miller and Gareth W. Perry and Jonathan D. Rizzo and Diego F. Sanchez and H. Lawrence Serra and H. Ward Silver and David R. Themens and Mary Lou West} } @article {670, title = {Fostering Collaborations with the Amateur Radio Community}, journal = {White Paper Submitted to the National Academy of Sciences Decadal Survey for Solar and Space Physics (Heliophysics) 2024-2033}, year = {2022}, doi = {10.3847/25c2cfeb.09fe22b4}, author = {Nathaniel A. Frissell and Laura Brandt and Stephen A. Cerwin and Kristina V. Collins and Timothy J. Duffy and David Kazdan and John Gibbons and William D. Engelke and Rachel M. Frissell and Robert B. Gerzoff and Stephen R. Kaeppler and Vincent Ledvina and William Liles and Elizabeth MacDonald and Gareth W. Perry and Jonathan D. Rizzo and Diego F. Sanchez and H. Lawrence Serra and H. Ward Silver and Tamitha Mulligan Skov and Mary Lou West} } @conference {540, title = {HamSCI Personal Space Weather Station (PSWS): Architecture and Current Status}, booktitle = {NSF CEDAR (Coupling, Energetics, and Dynamics of Atmospheric Regions)}, year = {2021}, month = {06/2021}, publisher = {CEDAR}, organization = {CEDAR}, address = {Virtual}, abstract = {

Recent advances in geospace remote sensing have shown that large-scale distributed networks of ground-based sensors pay large dividends by providing a big picture view of phenomena that were previously observed only by point-measurements. While existing instrument networks provide excellent insight into ionospheric and space science, the system remains undersampled and more observations are needed to advance understanding. In an effort to generate these additional measurements, the Ham Radio Science Citizen Investigation (HamSCI, hamsci.org) is working with the Tucson Amateur Packet Radio Corporation (TAPR, tapr.org), an engineering organization comprised of volunteer amateur radio operators and engineers, to develop a network of Personal Space Weather Stations (PSWS). These instruments that will provide scientific-grade observations of signals-of-opportunity across the HF bands from volunteer citizen observers as part of the NSF Distributed Array of Small Instruments (DASI) program. A performance-driven PSWS design (~US$500) will be a modular, multi-instrument device that will consist of a dual-channel phase-locked 0.1-60 MHz software defined radio (SDR) receiver, a ground magnetometer with (~10 nT resolution and 1-sec cadence), and GPS/GNSS receiver to provide precision time stamping and serve as a GPS disciplined oscillator (GPSDO) to provide stability to the SDR receiver. A low-cost PSWS (\< US$100) that measures Doppler shift of HF signals received from standards stations such as WWV (US) and CHU (Canada) and includes a magnetometer is also being developed. HF sounding algorithms making use of signals of opportunity will be developed for the SDR-based PSWS. All measurements will be collected into a central database for coordinated analysis and made available for public access.

}, author = {Nathaniel A. Frissell and Dev Joshi and Veronica I. Romanek and Kristina V. Collins and Aidan Montare and David Kazdan and John Gibbons and William D. Engelke and Travis Atkison and Hyomin Kim and Scott H. Cowling and Thomas C. McDermott and John Ackermann and David Witten and Julius Madey and H. Ward Silver and William Liles and Steven Cerwin and Philip J. Erickson and Ethan S. Miller and Juha Vierinen} } @conference {359, title = {HamSCI: Space Weather Operational Resources and Needs of the Amateur Radio Community}, booktitle = {American Meteorological Society Annual Meeting}, year = {2020}, month = {01/2020}, publisher = {American Meteorological Society Annual Meeting}, organization = {American Meteorological Society Annual Meeting}, address = {Boston, MA}, abstract = {

The amateur (ham) radio community is a global community of over 3 million people who use and build radio equipment for communications, experimentation, and science. By definition, amateur radio is a volunteer service, with the operators required to hold government-issued licenses that are typically earned by passing knowledge tests covering radio regulations and practices, radio theory, and electromagnetic theory. In the United States, there are about 750,000 licensed hams, ranging in age from very young to very old, and ranging in experience from neophyte to people with advanced degrees in radio engineering and science. Amateur radio operators are licensed to transmit on bands spread across the radio frequency (RF) spectrum, from very low frequency (VLF) up to hundreds of gigahertz. The purpose of these communications range from mission-critical emergency and public service communications to social contacts to highly competitive contests and achievement award programs. Many of these communications rely on trans-ionospheric paths, and therefore are heavily influenced by conditions in near-Earth space, or space weather.
Amateurs today obtain space weather and propagation prediction information from sources such as the NOAA Space Weather Prediction Center (SWPC), spaceweather.com, the Voice of America Coverage Analysis Program (VOACAP), amateur radio propagation columnists (ARRL, RSGB, and CQ Magazine), and spaceweatherwoman.com (Dr. Tamitha Skov). In order to predict success for their communications efforts, hams often use parameters such as smoothed sunspot number, 10.7 cm wavelength solar flux proxy, and the planetary Kp and Ap indices as inputs to predict radio propagation performance. Traditionally, these predictions focus on the driving influence of space conditions and the sun{\textquoteright}s output. However, frontier research in the space sciences community has revealed that for improved predictive success, much more information needs to be provided on neutral atmosphere dynamics from the lower atmosphere and its coupled effects on the ionosphere, and predictions need to be available at higher temporal and spatial resolution. Lower atmospheric influences include atmospheric gravity waves that can couple to traveling ionospheric disturbances that can dramatically alter radio propagation paths. Tropospheric phenomena such as temperature inversions and wind shear also affect VHF and UHF propagation. To be most useful, the ham community needs operational products that provide real time nowcasts and multi-day forecasts which predict how space weather through the whole atmosphere affects radio wave propagation on global scale and at all operational wavelengths.
To help with this effort, hams can provide data with unique spatial and temporal coverage back to the research and forecast community. The amateur radio community has already started this process with the creation of multiple global-scale, real-time propagation reporting systems such as the Weak Signal Propagation Reporting Network (WSPRNet), PSKReporter, and the Reverse Beacon Network (RBN). Studies by the Ham radio Science Citizen Investigation (HamSCI) have shown that data from these systems, if applied correctly, can effectively be used to study ionospheric space weather events. Experienced amateurs keep detailed records of verified point-to-point contacts and have extensive experience operating under a wide variety of geophysical conditions and locations, both of which can provide unique insights when shared with the professional research community. In this presentation, we will describe efforts led by the HamSCI collective to provide this research community feedback through active HamSCI community email lists and annual HamSCI workshops. We will also describe strategies with good initial success at amateur-professional collaboration, including a HamSCI-led amateur radio community - professional research community partnership to create a network of HamSCI Personal Space Weather Stations (PSWS), which will allow citizen scientists to make science-grade space weather observations from their own backyards.

}, url = {https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/370904}, author = {Nathaniel A. Frissell and Philip J. Erickson and Ethan S. Miller and William Liles and H. Ward Silver and R. Carl Luetzelschwab and Tamitha Skov} } @conference {303, title = {Ham Radio 2.0 - Science, Service, Skill (Keynote Address)}, booktitle = {HamSCI Workshop 2019}, year = {2019}, month = {03/2019}, publisher = {HamSCI}, organization = {HamSCI}, address = {Cleveland, OH}, abstract = {

Amateur radio sits at the junction of technology, volunteerism, and craft.\  Which of those doors by which you enter the world of ham radio - science, service, skill - colors your expectations and interests, often for life.\  Yet the technical and demographic changes sweeping through society have not overlooked amateur radio.\  The service faces many challenges to long-held traditions and assumptions.\  What tools can we provide to not just meet the challenges but prosper, keeping amateur radio vibrant and enjoyable in order to develop our skills and support our fellow citizens, fulfilling our Basis and Purpose along the way?\  Speaking from a technical background to a technical audience, we{\textquoteright}ll consider both our opportunities and obligations to amateur radio writ large while enjoying a chuckle or two, as well.

}, author = {H. Ward Silver} } @article {257, title = {The Personal Space Weather Station}, volume = {102}, year = {2018}, month = {04/2018}, pages = {38-41}, issn = {0033-4812}, url = {http://www.arrl.org/qst}, author = {H. Ward Silver} } @conference {230, title = {HamSCI and the 2017 Total Solar Eclipse}, booktitle = {American Geophysical Union Fall Meeting}, year = {2017}, month = {12/2017}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {New Orleans, LA}, author = {N. A. Frissell and J. D. Katz and S. W. Gunning and J. S. Vega and A. J. Gerrard and M. L. Moses and G. D. Earle and M. L. West and P. J. Erickson and E. S. Miller and R. Gerzoff and H. Ward Silver} } @conference {143, title = {HamSCI: The Ham Radio Science Citizen Investigation}, booktitle = {Fall 2016 American Geophysical Union}, year = {2016}, month = {12/2016}, publisher = {American Geophysical Union}, organization = {American Geophysical Union}, address = {San Francisco}, abstract = {

Amateur (or {\textquotedblleft}ham{\textquotedblright}) radio operators are individuals with a non-pecuniary interest in radio technology, engineering, communications, science, and public service. They are licensed by their national governments to transmit on\ amateur radio frequencies. In many jurisdictions, there is no age requirement for a ham radio license, and operators from diverse backgrounds participate. There are more than 740,000 hams in the US, and over 3 million (estimated)\ worldwide. Many amateur communications are conducted using transionospheric links and thus affected by space weather and ionospheric processes. Recent technological advances have enabled the development of\ automated ham radio observation networks (e.g. the Reverse Beacon Network,\ www.reversebeacon.net) and specialized operating modes for the study of weak-signal propagation. The data from these networks have been\ shown to be useful for the study of ionospheric processes. In order to connect professional researchers with the volunteer-based ham radio community, HamSCI (Ham Radio Science Citizen Investigation,\ www.hamsci.org) has\ been established. HamSCI is a platform for publicizing and promoting projects that are consistent with the following objectives: (1) Advance scientific research and understanding through amateur radio activities. (2) Encourage\ the development of new technologies to support this research. (3) Provide educational opportunities for the amateur community and the general public. HamSCI researchers are working with the American Radio Relay League\ (ARRL,\ www.arrl.org) to publicize these objectives and recruit interested hams. The ARRL is the US national organization for amateur radio with a membership of over 170,000 and a monthly magazine, QST. HamSCI is\ currently preparing to support ionospheric research connected to the 21 Aug 2017 Total Solar Eclipse by expanding coverage of the Reverse Beacon Network and organizing a large-scale ham radio operating event ({\textquotedblleft}QSO\ Party{\textquotedblright}) to generate data during the eclipse.

}, url = {http://hamsci.org/sites/default/files/publications/2016_AGU_Frissell_HamSCI.pdf}, author = {Nathaniel A. Frissell and Magdalina L. Moses and Gregory Earle and Robert W. McGwier and Ethan S. Miller and Steven R. Kaeppler and H. Ward Silver and Felipe Ceglia and David Pascoe and Nicholas Sinanis and Peter Smith and Richard Williams and Alex Shovkoplyas and Andrew J. Gerrard} } @booklet {668, title = {HamSCI and the 2017 Total Solar Eclipse (HamSCI Founding Document)}, year = {2015}, url = {https://hamsci.org/publications/hamsci-and-2017-total-solar-eclipse-hamsci-founding-document}, author = {Nathaniel A. Frissell and Magdalina L. Moses and Gregory D. Earle and Robert McGwier and H. Ward Silver} }